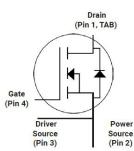


900V N-Channel MOSFET

Description

Silicon Carbide (SiC) MOSFET use a completely new technology that provide superior switching performance and higher reliability compared to Silicon. In addition, the low ON resistance and compact chip size ensure low capacitance and gate charge. Consequently, system benefits include highest efficiency, faster operating frequency, increased power density, reduced EMI, and reduced system size.


Features

- High Speed Switching with Low Capacitances
- High Blocking Voltage with Low RDS(on)
- Simple to drive with Standard Gate Drive
- 100% avalanche tested
- Maximum junction temperature of 150°C
- ROHS Compliant

Application

- EV Charging
- DC-AC Inverters
- High Voltage DC/DC Converters
- Switch Mode Power Supplies
- Power Factor Correction Modules
- Motor Drives

Ordering Information

Part Number	Marking	Package	Packaging
JX4S0040090M	JX4S0040090M	TO-247	Tube

Absolute Maximum Ratings(Tc=25℃)

Symbol	Parameter	Value	Unit
V _{DS}	Drain-Source Voltage	900	V
I _D	Drain Current(continuous)at Tc=25℃	60	А
I _D	Drain Current(continuous)at Tc=100℃	40	А
I _{DM}	Drain Current (pulsed)	200	А
V _{GS}	Gate-Source Voltage	-10/+25	V
P _D	Power Dissipation T _C = 25°C	328	W
T _J , Tstg	Junction and Storage Temperature Range	-55 to +150	°C

Electrical Characteristics($T_J = 25^{\circ}C$ unless otherwise specified)

Typical Performance-Static

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV _{DS}	Drain-source Breakdown	L -250A \ / -0\/	900			V
DV DS	Voltage	I_D =250uA, V_{GS} =0V	900			V
l	Zero Gate Voltage Drain	V _{DS} =900V, V _{GS} =0V,			100	uA
I _{DSS}	Current	T _J =25°C			100	uA
I _{GSS}	Gate-body Leakage Current	V_{DS} =0V ; V_{GS} =10 to 20V			250	nA
V _{GS(th)}	Gate Threshold Voltage	V_{DS} = V_{GS} , I_{D} =5mA	2		4	V
D.	Static Drain-source On	V _{GS} =20V. I _D =30A		38	48	mΩ
R _{DS(on)}	Resistance	VGS-20V, ID-30A		30	40	11122
R _G	Gate Resistance	V _{GS} =0V,f=1MHz		3		Ω

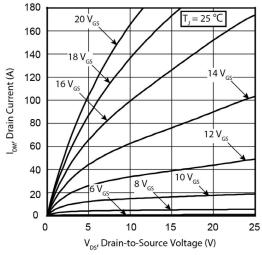
Typical Performance-Dynamic

C _{iss}	Input Capacitance		1668	1	pF
Coss	Output Capacitance	V _{DS} =600V,f=1000KHz,V _{GS} =0V	92		pF
C _{rss}	Reverse Transfer Capacitance		11		pF
Qg	Total Gate Charge	V _{DS} =600V, I _D =30A,V _{GS} =-5~20V	88		nC
Q _{gs}	Gate-source Charge		22		nC
Q_{gd}	Gate-Drain Charge		26		nC
t _{d(on)}	Turn-on Delay Time	V _{DD} =600V,ID=30A, V _{GS} =-5V~20V, R _G =0Ω,	21		ns
t _r	Rise Time		25		ns
t _{d(off)}	Turn-off Delay Time		38		ns
t _f	Fall Time	- ,	21		ns

JX4S0040090M

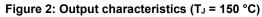
Typical Performance-Reverse Diode

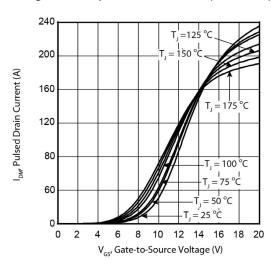
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V	Forward Voltage	V _{GS} =0V,I _F =30A,T _J =25°C	3		6	V
V _{FSD}	Forward Vollage	V _{GS} =0V,I _F =30A,T _J =150°C	3		6	V
trr	Reverse Recovery Time	\\ -0\\ I -20 A		33		ns
Qrr	Reverse Recovery Charge	V_{GS} =0 V, I _F =30 A, V_{R} =600 V.		251		nC
	Peak Reverse Recovery	d <i>i</i> /d <i>t</i> = 100 A/µs		19		А
Irrm	Current	αναι - 100 Ανμ3		19		A


Thermal Characteristics

Symbol	Parameter	Value.	Unit
Rejc	Thermal Resistance, Junction-to-Case	0.3	°C/W
Reja	Thermal Resistance, Junction-to-Case	40	°C/W

The values are based on the junction-to case thermal impedance which is measured with the device mounted to a large heat sink assuming maximum junction temperature of Tj(max)=150 $^{\circ}$ C




Electrical Characteristics (25℃ unless noted)

T₁ = 150 °C 20 V, 160 140 18 V_G I_{DM}, Drain Current (A) 120 16 V_{GS} 12 V 100 80 10 V 60 40 8 V_{GS} 20 0 0 10 15 25 $V_{DS'}$ Drain-to-Source Voltage (V)

Figure 1: Output characteristics (T_J = 25 °C)

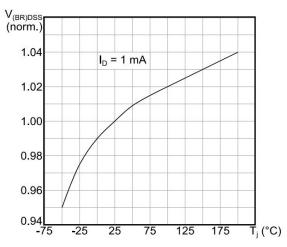
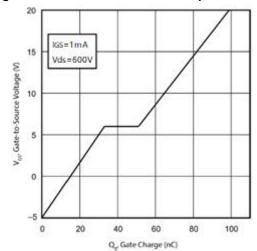


Figure 3: Transfer characteristics

P_{tot} (W)
300
T_J ≤ 150°C
250
200
150
100
50
0
-50
0
50
100
150
T_c(°C)

Figure 4 Normalized BVDSS vs. Temperature



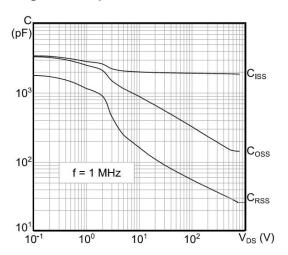

Figure 5: Power dissipation

Figure 6: Gate charge vs gate-source voltage

Figure 7: Capacitance variations

Figure 8: Switching energy vs. drain current

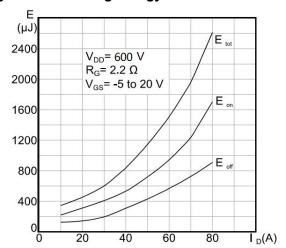
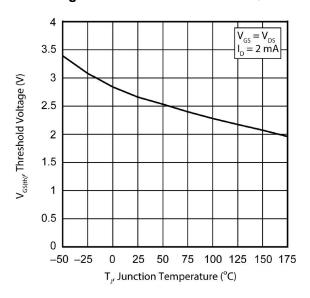



Figure 9: Normalized Vth vs. TJ

Figure 10: Normalized Rdson vs. TJ

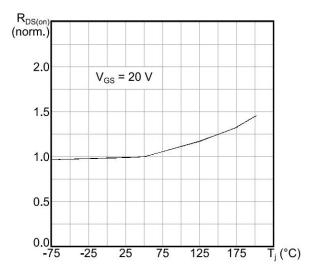


Figure 11: Body diode characteristics $(T_J = 25 \,^{\circ}\text{C})$

Figure 12: Body diode characteristics $(T_J = 150 \, ^{\circ}\text{C})$

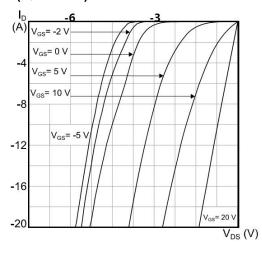
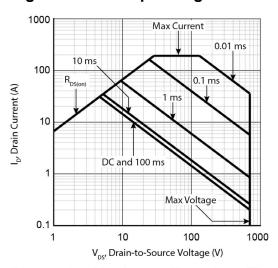
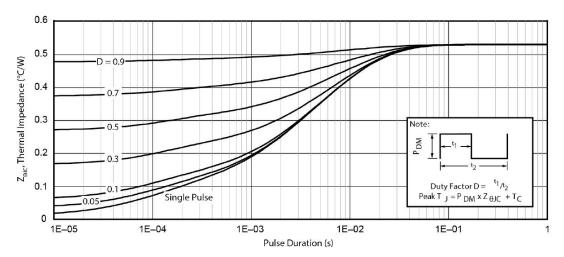
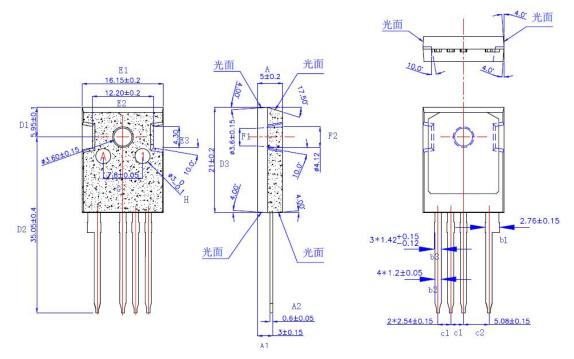


Figure 13: Safe operating area


Figure 14: Maximum Transient Thermal impedance

6

Package Drawing:

Dimensions (UNIT: mm)

SYM	MILLIMETERS		SYM	MILLIMETERS	
	MIN	MAX		MIN	MAX
A	4.98	5.02	D2	34.65	35.45
A1	2.85	3.15	D3	20.80	21.20
A2	0.55	0.65	E1	15.95	16.35
b1	2.61	2.91	E2	12.00	12.40
b2	1.15	1.25	F1	3.45	3.75
b3	1.30	1.57	F2	4.12	4.12
c1	2.39	2.69	G	7.75	7.85
c2	4.93	5.23	Н	2.90	3.10
D1	5.85	6.05			